Detecting and Correcting for Separation in Strategic Choice Models
Casey Crisman-Cox,
Olga Gasparyan and
Curtis S. Signorino
Political Analysis, 2023, vol. 31, issue 3, 414-429
Abstract:
Separation or “perfect prediction” is a common problem in discrete choice models that, in practice, leads to inflated point estimates and standard errors. Standard statistical packages do not provide clear advice on how to correct these problems. Furthermore, separation can go completely undiagnosed in fitting advanced models that optimize a user-supplied log-likelihood rather than relying on pre-programmed estimation procedures. In this paper, we both describe the problems that separation can cause and address the issue of detecting it in empirical models of strategic interaction. We then consider several solutions based on penalized maximum likelihood estimation. Using Monte Carlo experiments and a replication study, we demonstrate that when separation is detected in the data, the penalized methods we consider are superior to ordinary maximum likelihood estimators.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:31:y:2023:i:3:p:414-429_10
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().