EconPapers    
Economics at your fingertips  
 

When Correlation Is Not Enough: Validating Populism Scores from Supervised Machine-Learning Models

Michael Jankowski and Robert A. Huber

Political Analysis, 2023, vol. 31, issue 4, 591-605

Abstract: Despite the ongoing success of populist parties in many parts of the world, we lack comprehensive information about parties’ level of populism over time. A recent contribution to Political Analysis by Di Cocco and Monechi (DCM) suggests that this research gap can be closed by predicting parties’ populism scores from their election manifestos using supervised machine learning. In this paper, we provide a detailed discussion of the suggested approach. Building on recent debates about the validation of machine-learning models, we argue that the validity checks provided in DCM’s paper are insufficient. We conduct a series of additional validity checks and empirically demonstrate that the approach is not suitable for deriving populism scores from texts. We conclude that measuring populism over time and between countries remains an immense challenge for empirical research. More generally, our paper illustrates the importance of more comprehensive validations of supervised machine-learning models.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:31:y:2023:i:4:p:591-605_7

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:31:y:2023:i:4:p:591-605_7