Creating and Comparing Dictionary, Word Embedding, and Transformer-Based Models to Measure Discrete Emotions in German Political Text
Tobias Widmann and
Maximilian Wich
Political Analysis, 2023, vol. 31, issue 4, 626-641
Abstract:
Previous research on emotional language relied heavily on off-the-shelf sentiment dictionaries that focus on negative and positive tone. These dictionaries are often tailored to nonpolitical domains and use bag-of-words approaches which come with a series of disadvantages. This paper creates, validates, and compares the performance of (1) a novel emotional dictionary specifically for political text, (2) locally trained word embedding models combined with simple neural network classifiers, and (3) transformer-based models which overcome limitations of the dictionary approach. All tools can measure emotional appeals associated with eight discrete emotions. The different approaches are validated on different sets of crowd-coded sentences. Encouragingly, the results highlight the strengths of novel transformer-based models, which come with easily available pretrained language models. Furthermore, all customized approaches outperform widely used off-the-shelf dictionaries in measuring emotional language in German political discourse.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:31:y:2023:i:4:p:626-641_9
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().