Generalized Kernel Regularized Least Squares
Qing Chang and
Max Goplerud
Political Analysis, 2024, vol. 32, issue 2, 157-171
Abstract:
Kernel regularized least squares (KRLS) is a popular method for flexibly estimating models that may have complex relationships between variables. However, its usefulness to many researchers is limited for two reasons. First, existing approaches are inflexible and do not allow KRLS to be combined with theoretically motivated extensions such as random effects, unregularized fixed effects, or non-Gaussian outcomes. Second, estimation is extremely computationally intensive for even modestly sized datasets. Our paper addresses both concerns by introducing generalized KRLS (gKRLS). We note that KRLS can be re-formulated as a hierarchical model thereby allowing easy inference and modular model construction where KRLS can be used alongside random effects, splines, and unregularized fixed effects. Computationally, we also implement random sketching to dramatically accelerate estimation while incurring a limited penalty in estimation quality. We demonstrate that gKRLS can be fit on datasets with tens of thousands of observations in under 1 min. Further, state-of-the-art techniques that require fitting the model over a dozen times (e.g., meta-learners) can be estimated quickly.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:32:y:2024:i:2:p:157-171_1
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().