EconPapers    
Economics at your fingertips  
 

Hypothesis Tests under Separation

Carlisle Rainey

Political Analysis, 2024, vol. 32, issue 2, 172-185

Abstract: Separation commonly occurs in political science, usually when a binary explanatory variable perfectly predicts a binary outcome. In these situations, methodologists often recommend penalized maximum likelihood or Bayesian estimation. But researchers might struggle to identify an appropriate penalty or prior distribution. Fortunately, I show that researchers can easily test hypotheses about the model coefficients with standard frequentist tools. While the popular Wald test produces misleading (even nonsensical) p-values under separation, I show that likelihood ratio tests and score tests behave in the usual manner. Therefore, researchers can produce meaningful p-values with standard frequentist tools under separation without the use of penalties or prior information.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:32:y:2024:i:2:p:172-185_2

Access Statistics for this article

More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:polals:v:32:y:2024:i:2:p:172-185_2