A Framework for the Unsupervised and Semi-Supervised Analysis of Visual Frames
Michelle Torres
Political Analysis, 2024, vol. 32, issue 2, 199-220
Abstract:
This article introduces to political science a framework to analyze the content of visual material through unsupervised and semi-supervised methods. It details the implementation of a tool from the computer vision field, the Bag of Visual Words (BoVW), for the definition and extraction of “tokens” that allow researchers to build an Image-Visual Word Matrix which emulates the Document-Term matrix in text analysis. This reduction technique is the basis for several tools familiar to social scientists, such as topic models, that permit exploratory, and semi-supervised analysis of images. The framework has gains in transparency, interpretability, and inclusion of domain knowledge with respect to other deep learning techniques. I illustrate the scope of the BoVW by conducting a novel visual structural topic model which focuses substantively on the identification of visual frames from the pictures of the migrant caravan from Central America.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:32:y:2024:i:2:p:199-220_4
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().