Nonparametric Unfolding of Binary Choice Data
Keith T. Poole
Political Analysis, 2000, vol. 8, issue 3, 211-237
Abstract:
This paper shows a general nonparametric unfolding technique for maximizing the correct classification of binary choice or two-category data. The motivation for and the primary focus of the unfolding technique are parliamentary roll call voting data. However, the procedures that implement the unfolding also can be applied to the problem of unfolding rank order data as well as analyzing a data set that would normally be the subject of a probit, logit, or linear probability analysis. One aspect of the scaling method greatly improves Manski's “maximum score estimator” technique for estimating limited dependent variable models. To unfold binary choice data two subproblems must be solved. First, given a set of chooser or legislator points, a cutting plane must be found such that it divides the legislators/choosers into two sets that reproduce the actual choices as closely as possible. Second, given a set of cutting planes for the binary choices, a point for each chooser or legislator must be found which reproduces the actual choices as closely as possible. Solutions for these two problems are shown in this paper. Monte Carlo tests of the procedure show it to be highly accurate in the presence of voting error and missing data.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:8:y:2000:i:03:p:211-237_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().