Ideal Point Estimation with a Small Number of Votes: A Random-Effects Approach
Michael Bailey
Political Analysis, 2001, vol. 9, issue 3, 192-210
Abstract:
Many conventional ideal point estimation techniques are inappropriate when only a limited number of votes are available. This paper presents a covariate-based random-effects Bayesian approach that allows scholars to estimate ideal points based on fewer votes than required for fixed-effects models. Using covariates brings more information to bear on the estimation; using a Bayesian random-effects approach avoids incidental parameter problems. Among other things, the method allows us to estimate directly the effect of covariates such as party on preferences and to estimate standard errors for ideal points. Monte Carlo results, an empirical application, and a discussion of further applications demonstrate the usefulness of the method.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:9:y:2001:i:03:p:192-210_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().