Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Variables
Philip Paolino
Political Analysis, 2001, vol. 9, issue 4, 325-346
Abstract:
Research in political science is often concerned with modeling dependent variables that are proportions. Proportions are relevant in a wide variety of substantive areas, including elections, the bureaucracy, and interest groups. Yet because most researchers rely upon an approach, OLS, that does not recognize key aspects of proportions, the conclusions we reach from normal models may not provide the best understanding of phenomena of interest in these areas. In this paper, I use Monte Carlo simulations to show that maximum likelihood estimation of these data using the beta distribution may provide more accurate and more precise results. I then present empirical analyses illustrating some of these differences.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (63)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:9:y:2001:i:04:p:325-346_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().