Forecasting GDP Growth using Disaggregated GDP Revisions
Adam Check,
Anna Nolan () and
Tyler Schipper
Additional contact information
Anna Nolan: Independent
Economics Bulletin, 2019, vol. 39, issue 4, 2580-2588
Abstract:
This paper investigates the informational content of regular revisions to real GDP growth and its components. We perform a real-time forecasting exercise for the advance estimate of real GDP growth using dynamic regression models that include revisions to GDP and its components. Echoing other work in the literature, we find little evidence that including aggregate GDP growth revisions improves forecast accuracy relative to an AR(1) baseline model; however, models that include revisions to components of GDP improve forecast accuracy. The first revision to consumption is particularly relevant in that every model that includes the revision outperforms the baseline model. Measured by root mean squared forecasting error (RMSFE), improvements are quite sizable, with many models increasing forecasting performance by 5% or more, and with top-performing models forecasting 0.18 percentage points closer to the advance estimate of growth. We use Bayesian model averaging to underscore that our results are driven by the informational content of revisions. The posterior probability of models with the first revision to consumption is significantly higher than our baseline model, despite strong priors that the latter should be the preferred forecasting model.
Keywords: data revisions; real-time data; forecasting (search for similar items in EconPapers)
JEL-codes: C5 C8 (search for similar items in EconPapers)
Date: 2019-11-12
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.accessecon.com/Pubs/EB/2019/Volume39/EB-19-V39-I4-P241.pdf (application/pdf)
Related works:
Working Paper: Forecasting GDP: Do Revisions Matter? (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ebl:ecbull:eb-18-00865
Access Statistics for this article
More articles in Economics Bulletin from AccessEcon
Bibliographic data for series maintained by John P. Conley ().