EconPapers    
Economics at your fingertips  
 

Testing for optimality in job search models

Gary Koop and Dale J. Poirier ()

Econometrics Journal, 2001, vol. 4, issue 2, 6

Abstract: Models of search in labor markets are potentially of great use for policy analy-sis since their parameters are structural. However, a common feature of these models is that an assumption of optimal behavior on the part of agents is necessary to achieve identifica-tion. From a classical econometric perspective, this means the assumption of optimality is untestable and, if optimality is not imposed, it is impossible to learn about the unidentified parameters. This paper argues that Bayesian methods can overcome both of these problems. In particular, we discuss testing optimality in stationary job search models with reservation wages. Learning about economically meaningful quantities such as the discount rate and risk aversion, not identified by the data alone, is considered.

Keywords: Bayesian; Reservation wage; SIR; Search; Posterior simulation. (search for similar items in EconPapers)
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (2)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:4:y:2001:i:2:p:6

Ordering information: This journal article can be ordered from
http://www.ectj.org

Access Statistics for this article

Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms

More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:ect:emjrnl:v:4:y:2001:i:2:p:6