EconPapers    
Economics at your fingertips  
 

Mathematical modeling of p53 pulses in G2 phase with DNA damage

L.W. Zhang, Y.M. Cheng and K.M. Liew

Applied Mathematics and Computation, 2014, vol. 232, issue C, 1000-1010

Abstract: A mathematical model of p53 pulses involved in G2/M phase transition is proposed to study the response of p53-centered signaling network and checkpoint mechanisms of G2 phase to DNA damages. The oscillation by p53-Mdm2 feedback loop as the response to DNA damage is first simulated. This follows by modeling the signaling network in G2 phase and realizing its importance in cell cycle progression. The signaling network is used to assess effects of different intensities of DNA damage on G2 phase transition. An examination of the dynamics of cell fate decision module shows that p53 arrester and Wip1 play key roles in DNA repair and may be an important target of cancer therapy. The present numerical analysis based on the proposed model may be useful for the inference of p53-mediated mechanisms in response to DNA damage in G2 phase under different damage conditions.

Keywords: Mathematical modeling; p53; DNA damage; G2 phase; Checkpoints; Dynamics (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314001659
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:232:y:2014:i:c:p:1000-1010

DOI: 10.1016/j.amc.2014.01.120

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:1000-1010