EconPapers    
Economics at your fingertips  
 

Convergence of rational Bernstein operators

Hermann Render

Applied Mathematics and Computation, 2014, vol. 232, issue C, 1076-1089

Abstract: In this paper we discuss convergence properties and error estimates of rational Bernstein operators introduced by Piţul and Sablonnière. It is shown that the rational Bernstein operators converge to the identity operator if and only if the maximal difference between two consecutive nodes is converging to zero. Further a Voronovskaja theorem is given based on the explicit computation of higher order moments for the rational Bernstein operator.

Keywords: Rational approximants; Bernstein operator; Positive operator (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314001982
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:232:y:2014:i:c:p:1076-1089

DOI: 10.1016/j.amc.2014.01.152

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:1076-1089