EconPapers    
Economics at your fingertips  
 

Laguerre approach for solving pantograph-type Volterra integro-differential equations

Şuayip Yüzbaşı

Applied Mathematics and Computation, 2014, vol. 232, issue C, 1183-1199

Abstract: In this paper, a collocation method based on Laguerre polynomials is presented to solve the pantograph-type Volterra integro-differential equations under the initial conditions. By using the Laguerre polynomials, the equally spaced collocation points and the matrix operations, the problem is reduced to a system of algebraic equations. By solving this system, we determine the coefficients of the approximate solution of the main problem. Also, an error estimation for the method is introduced by using the residual function. The approximate solution is corrected in terms of the estimated error function. Finally, we give seven examples for the applications of the method on the problem and compare our results by with existing methods.

Keywords: Pantograph-type Volterra integro-differential equations; Laguerre polynomials; Approximate solutions; Collocation method; Collocation points; Numerical methods (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031400112X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:232:y:2014:i:c:p:1183-1199

DOI: 10.1016/j.amc.2014.01.075

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:1183-1199