EconPapers    
Economics at your fingertips  
 

The block independence in the generalized inverse AT,S(2) for some ordered matrices and applications

Guang-Jing Song and Shaowen Yu

Applied Mathematics and Computation, 2014, vol. 232, issue C, 399-410

Abstract: In this paper, the definition of block independence in the generalized inverse AT,S(2) is firstly given, and then a necessary and sufficient condition for some ordered matrices to be block independent in the generalized inverse AT,S(2) is derived. As an application, a necessary and sufficient condition forA1+A2+⋯+AkT,S(2)=A1T1,S1(2)+A2T2,S2(2)+⋯+AkTk,Sk(2)is proved. Moreover, some results are shown with respect to the Moore–Penrose inverse, the Weighted Moore–Penrose inverse and the Drazin inverse, respectively.

Keywords: Rank; Linear matrix expression; Moore–Penrose inverse; Drazin inverse; Weighted Moore–Penrose inverse; Block matrix (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314000125
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:232:y:2014:i:c:p:399-410

DOI: 10.1016/j.amc.2013.12.173

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:399-410