EconPapers    
Economics at your fingertips  
 

A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis

F.A. Rihan, D.H. Abdel Rahman, S. Lakshmanan and A.S. Alkhajeh

Applied Mathematics and Computation, 2014, vol. 232, issue C, 606-623

Abstract: Recently, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. In this paper, we present a delay differential model to describe the interactions between the effector and tumour cells. The existence of the possible steady states and their local stability and change of stability via Hopf bifurcation are theoretically and numerically investigated. Parameter estimation problem for given real observations, using least squares approach, is studied. The global stability and sensitivity analysis are also numerically proved for the model. The stability and periodicity of the solutions may depend on the time-lag parameter. The model is qualitatively consistent with the experimental observations of immune-induced tumour dormancy. The model also predicts dormancy as a transient period of growth which necessarily results in either tumour elimination or tumour escape.

Keywords: DDEs; Hopf bifurcation; Immune cells; Parameter estimation; Sensitivity; Stability; Tumour cells (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314001568
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:232:y:2014:i:c:p:606-623

DOI: 10.1016/j.amc.2014.01.111

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:606-623