EconPapers    
Economics at your fingertips  
 

Stability and bifurcation in plant–pathogens interactions

Bruno Buonomo and Marianna Cerasuolo

Applied Mathematics and Computation, 2014, vol. 232, issue C, 858-871

Abstract: We consider a plant–pathogen interaction model and perform a bifurcation analysis at the threshold where the pathogen-free equilibrium loses its hyperbolicity. We show that a stimulatory–inhibitory host response to infection load may be responsible for the occurrence of multiple steady states via backward bifurcations. We also find sufficient conditions for the global stability of the pathogen-present equilibrium in case of null or linear inhibitory host response. The results are discussed in the framework of the recent literature on the subject.

Keywords: Plant–pathogen interaction; Mathematical model; Bifurcation; Global stability (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314001726
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:232:y:2014:i:c:p:858-871

DOI: 10.1016/j.amc.2014.01.127

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:858-871