EconPapers    
Economics at your fingertips  
 

An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs

Malik Zaka Ullah, Stefano Serra-Capizzano and Fayyaz Ahmad

Applied Mathematics and Computation, 2015, vol. 250, issue C, 249-259

Abstract: We developed multi-step iterative method for computing the numerical solution of nonlinear systems, associated with ordinary differential equations (ODEs) of the form L(x(t))+f(x(t))=g(t): here L(·) is a linear differential operator and f(·) is a nonlinear smooth function. The proposed iterative scheme only requires one inversion of Jacobian which is computationally very efficient if either LU-decomposition or GMRES-type methods are employed. The higher-order Frechet derivatives of the nonlinear system stemming from the considered ODEs are diagonal matrices. We used the higher-order Frechet derivatives to enhance the convergence-order of the iterative schemes proposed in this note and indeed the use of a multi-step method dramatically increases the convergence-order. The second-order Frechet derivative is used in the first step of an iterative technique which produced third-order convergence. In a second step we constructed matrix polynomial to enhance the convergence-order by three. Finally, we freeze the product of a matrix polynomial by the Jacobian inverse to generate the multi-step method. Each additional step will increase the convergence-order by three, with minimal computational effort. The convergence-order (CO) obeys the formula CO=3m, where m is the number of steps per full-cycle of the considered iterative scheme. Few numerical experiments and conclusive remarks end the paper.

Keywords: Nonlinear systems; Nonlinear ordinary differential equations; Higher order Frechet derivative; Multi-step (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314014787
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:250:y:2015:i:c:p:249-259

DOI: 10.1016/j.amc.2014.10.103

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:250:y:2015:i:c:p:249-259