EconPapers    
Economics at your fingertips  
 

An Accelerated Double Step Size model in unconstrained optimization

Milena J. Petrović

Applied Mathematics and Computation, 2015, vol. 250, issue C, 309-319

Abstract: This work presents a double step size algorithm with accelerated property for solving nonlinear unconstrained optimization problems. Using the inexact line search technique, as well as the approximation of the Hessian by an adequate diagonal matrix, an efficient accelerated gradient descent method is developed. The proposed method is proven to be linearly convergent for uniformly convex functions and also, under some specific conditions, linearly convergent for strictly convex quadratic functions. Numerical testings and comparisons show that constructed scheme exceeds some known iterations for unconstrained optimization with respect to all three tested properties: number of iterations, CPU time and number of function evaluations.

Keywords: Line search; Gradient descent methods; Newton method; Convergence rate (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314014799
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:250:y:2015:i:c:p:309-319

DOI: 10.1016/j.amc.2014.10.104

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:250:y:2015:i:c:p:309-319