Availability analysis for software system with intrusion tolerance
Houbao Xu
Applied Mathematics and Computation, 2015, vol. 252, issue C, 64-76
Abstract:
This paper is devoted to analyzing the instantaneous availability of a typical software system with intrusion tolerance. By formulating the system with a couple of ordinary differential and partial differential equations, this paper describes the system as a time-delay partial differential equation. Based on the time-delay model, both steady-state availability and instantaneous availability are investigated. The optimal policy for preventive patch management to maximize the steady-state availability of the software system is obtained, and its related availability criterions are also presented. Employing the finite difference scheme and Trotter–Kato theorem, we converted the time-delay partial equation into a time-delay ordinary equation. As a result, the instantaneous availability of the system is derived. Some numerical results are given to show the effectiveness of the method presented in the paper.
Keywords: Instantaneous availability; Differential scheme; Strong continuous semigroup; Intrusion tolerance (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314016439
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:252:y:2015:i:c:p:64-76
DOI: 10.1016/j.amc.2014.11.110
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().