On some steplength approaches for proximal algorithms
Federica Porta and
Ignace Loris
Applied Mathematics and Computation, 2015, vol. 253, issue C, 345-362
Abstract:
We discuss a number of novel steplength selection schemes for proximal-based convex optimization algorithms. In particular, we consider the problem where the Lipschitz constant of the gradient of the smooth part of the objective function is unknown. We generalize two optimization algorithms of Khobotov type and prove convergence. We also take into account possible inaccurate computation of the proximal operator of the non-smooth part of the objective function. Secondly, we show convergence of an iterative algorithm with Armijo-type steplength rule, and discuss its use with an approximate computation of the proximal operator. Numerical experiments show the efficiency of the methods in comparison to some existing schemes.
Keywords: Proximal algorithms; Steplength selection; Non-smooth optimization; Signal recovering (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314017330
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:253:y:2015:i:c:p:345-362
DOI: 10.1016/j.amc.2014.12.079
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().