Can a semi-simple eigenvalue admit fractional sensitivities?
A. Luongo and
M. Ferretti
Applied Mathematics and Computation, 2015, vol. 255, issue C, 165-178
Abstract:
We perform high-order sensitivity analysis of eigenvalues and eigenvectors of linear systems depending on parameters. Attention is focused on double not-semi-simple and semi-simple eigenvalues, undergoing perturbations, either of regular or singular type. The use of integer (Taylor) or fractional (Puiseux) series expansions is discussed, and the analysis carried out both on the characteristic polynomial and on the eigenvalue problem. It is shown that semi-simple eigenvalues can admit fractional sensitivities when the perturbations are singular, conversely to the not-semi-simple case. However, such occurrence only manifests itself when a second-order perturbation analysis is carried out. As a main result, it is found that such over-degenerate case spontaneously emerges in bifurcation analysis, when one looks for the boundaries of the stability domain of circulatory mechanical systems possessing symmetries. A four degree-of-freedom system under a follower force is studied as an illustrative example.
Keywords: Sensitivity analysis; Semi-simple eigenvalue; Singular perturbations; Stability domain; Circulatory systems (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314002471
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:255:y:2015:i:c:p:165-178
DOI: 10.1016/j.amc.2014.01.178
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().