EconPapers    
Economics at your fingertips  
 

On a splitting higher-order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped

Bernard Ducomet, Alexander Zlotnik and Alla Romanova

Applied Mathematics and Computation, 2015, vol. 255, issue C, 196-206

Abstract: An initial-boundary value problem for the n-dimensional (n⩾2) time-dependent Schrödinger equation in a semi-infinite parallelepiped is considered. Starting from the Numerov–Crank–Nicolson finite-difference scheme, we first construct higher order scheme with splitting space averages having much better spectral properties for n⩾3. Next we apply the Strang-type splitting with respect to the potential and, third, construct discrete transparent boundary conditions (TBC). For the resulting double-splitting method, the uniqueness of solution and the uniform in time L2-stability are proved and an error estimate is stated. Owing to the splitting, an effective direct algorithm using FFT (in the coordinate directions perpendicular to the leading axis of the parallelepiped) is applied to implement the scheme for general potential.

Keywords: Time-dependent Schrödinger equation; Crank–Nicolson scheme; Higher-order scheme; Strang splitting; Discrete transparent boundary conditions; Stability (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314010157
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:255:y:2015:i:c:p:196-206

DOI: 10.1016/j.amc.2014.07.058

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:255:y:2015:i:c:p:196-206