EconPapers    
Economics at your fingertips  
 

New aspects of Beurling–Lax shift invariant subspaces

Lihui Tan, Tao Qian and Qiuhui Chen

Applied Mathematics and Computation, 2015, vol. 256, issue C, 257-266

Abstract: In terms of forward and backward shift invariant subspaces, we characterize functions in Hardy spaces, or, analytic signals in the terminology of signal analysis, through multiplications between analytic and conjugate analytic signals. As applications, we give some necessary and sufficient conditions for solutions of the Bedrosian equation H(fg)=f(Hg) when f or g is a bandlimited signal. We also solve the band preserving problem by means of the shift invariant subspace method, which establishes some necessary and sufficient conditions on the functions f that make fg have bandwidth within that of the function g.

Keywords: Bedrosian identity; Backward shift invariant subspace; Forward shift invariant subspace; Band preserving problem (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315000053
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:256:y:2015:i:c:p:257-266

DOI: 10.1016/j.amc.2014.12.147

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:257-266