Resolving-power dominating sets
Sudeep Stephen,
Bharati Rajan,
Cyriac Grigorious and
Albert William
Applied Mathematics and Computation, 2015, vol. 256, issue C, 778-785
Abstract:
For a graph G(V,E) that models a facility or a multi-processor network, detection devices can be placed at vertices so as to identify the location of an intruder such as a thief or fire or saboteur or a faulty processor. Resolving-power dominating sets are of interest in electric networks when the latter helps in the detection of an intruder/fault at a vertex. We define a set S⊆V to be a resolving-power dominating set of G if it is resolving as well as a power-dominating set. The minimum cardinality of S is called resolving-power domination number. In this paper, we show that the problem is NP-complete for arbitrary graphs and that it remains NP-complete even when restricted to bipartite graphs. We provide lower bounds for the resolving-power domination number for trees and identify classes of trees that attain the lower bound. We also solve the problem for complete binary trees.
Keywords: Domination; Power domination; Metric dimension (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031500051X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:256:y:2015:i:c:p:778-785
DOI: 10.1016/j.amc.2015.01.037
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().