EconPapers    
Economics at your fingertips  
 

Suppressing chaos in discontinuous systems of fractional order by active control

Marius-F. Danca and Roberto Garrappa

Applied Mathematics and Computation, 2015, vol. 257, issue C, 89-102

Abstract: In this paper, a chaos control algorithm for a class of piece-wise continuous chaotic systems of fractional order, in the Caputo sense, is proposed. With the aid of Filippov’s convex regularization and via differential inclusions, the underlying discontinuous initial value problem is first recast in terms of a set-valued problem and hence it is continuously approximated by using Cellina’s Theorem for differential inclusions. For chaos control, an active control technique is implemented so that the unstable equilibria become stable. As example, Shimizu–Morioka’s system is considered. Numerical simulations are obtained by means of the Adams–Bashforth–Moulton method for differential equations of fractional-order.

Keywords: Discontinuous chaotic systems of fractional order; Filippov regularization; Cellina’s Theorem; Sigmoid function; Differential equations of fractional-order; Chaos control (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314016312
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:257:y:2015:i:c:p:89-102

DOI: 10.1016/j.amc.2014.10.133

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:89-102