A generalized relaxed positive-definite and skew-Hermitian splitting preconditioner for non-Hermitian saddle point problems
Hong-tao Fan and
Xin-yun Zhu
Applied Mathematics and Computation, 2015, vol. 258, issue C, 36-48
Abstract:
For non-Hermitian saddle point problems with the non-Hermitian positive definite (1,1)-block, Zhang et al. (2014) presented a relaxed positive-definite and skew-Hermitian splitting (RPSS) preconditioner to accelerate the convergence rates of the Krylov subspace iteration methods such as GMRES. In this paper, the convergence property of the GRPSS iteration method is proved and a generalized RPSS (GRPSS) preconditioner is proposed. The GRPSS preconditioner is much closer to the coefficient matrix than the RPSS preconditioner in certain norm, which straightforwardly results in an GRPSS iteration method. We employing the GRPSS preconditioner to accelerate some Krylov subspace methods (like GMRES). The spectral distribution of the preconditioned matrix is described and an upper bound of the degree of the minimal polynomial of the preconditioned matrix is obtained. Finally, numerical experiments of a model Navier–Stokes equation are presented to illustrate the efficiency of the GRPSS preconditioner.
Keywords: Non-Hermitian saddle point problems; Generalized relaxation PSS preconditioner; Eigenvalue properties; GMRES method (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315001514
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:258:y:2015:i:c:p:36-48
DOI: 10.1016/j.amc.2015.01.119
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().