A new gradient projection method for matrix completion
Rui-Ping Wen and
Xi-Hong Yan
Applied Mathematics and Computation, 2015, vol. 258, issue C, 537-544
Abstract:
In this paper, a new gradient projection method is proposed, which generates a feasible matrix sequences. The decent property of this method is proved. Based on the decent property, the convergence of the new method is discussed. Moreover, a sufficient and necessary condition for the optimal matrix is obtained. Finally, numerical experiments show the new method is effective in precision.
Keywords: Matrix completion; Gradient; Projection; Feasible sequence; Convergence (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315002210
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:258:y:2015:i:c:p:537-544
DOI: 10.1016/j.amc.2015.02.041
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().