EconPapers    
Economics at your fingertips  
 

Risk management in portfolio applications of non-convex stochastic programming

Li-Ping Pang, Shuang Chen and Jin-He Wang

Applied Mathematics and Computation, 2015, vol. 258, issue C, 565-575

Abstract: In this paper, we investigate a method to hedge nonconvex stochastic programming with CVaR constraints and apply the sample average approximation (SAA) method based on bundle method to solve it. Under some moderate conditions, the SAA solution converges to its true counterpart with probability approaching one. This technique is suitable for using by investment companies, brokerage firms, mutual funds, and any business that evaluates risks. It can be combined with analytical or scenario-based methods to optimize portfolios in which case the calculations often come down to non-convex programming. Finally, we illustrate our method by considering several portfolios in the Chinese stocks market.

Keywords: Non-convex stochastic programming; Risk management; Portfolio; Bundle methods (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315002118
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:258:y:2015:i:c:p:565-575

DOI: 10.1016/j.amc.2015.02.031

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:258:y:2015:i:c:p:565-575