A convergent least-squares regularized blind deconvolution approach
Anastasia Cornelio,
Federica Porta and
Marco Prato
Applied Mathematics and Computation, 2015, vol. 259, issue C, 173-186
Abstract:
The aim of this work is to present a new and efficient optimization method for the solution of blind deconvolution problems with data corrupted by Gaussian noise, which can be reformulated as a constrained minimization problem whose unknowns are the point spread function (PSF) of the acquisition system and the true image. The objective function we consider is the weighted sum of the least-squares fit-to-data discrepancy and possible regularization terms accounting for specific features to be preserved in both the image and the PSF. The solution of the corresponding minimization problem is addressed by means of a proximal alternating linearized minimization (PALM) algorithm, in which the updating procedure is made up of one step of a gradient projection method along the arc and the choice of the parameter identifying the steplength in the descent direction is performed automatically by exploiting the optimality conditions of the problem. The resulting approach is a particular case of a general scheme whose convergence to stationary points of the constrained minimization problem has been recently proved. The effectiveness of the iterative method is validated in several numerical simulations in image reconstruction problems.
Keywords: Blind deconvolution; Regularization; Least squares problems; Optimization methods (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315002362
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:259:y:2015:i:c:p:173-186
DOI: 10.1016/j.amc.2015.02.048
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().