EconPapers    
Economics at your fingertips  
 

Paths and cycles identifying vertices in twisted cubes

Pao-Lien Lai

Applied Mathematics and Computation, 2015, vol. 259, issue C, 620-627

Abstract: The hypercube is one of the most popular interconnection networks since it has simple structure and is easy to implement. The twisted cube is an important variation of the hypercube and preserves many of its desirable properties. Karpovsky et al. introduced the concept of identifying codes to model fault-detection in multiprocessor systems and Honkala et al. developed an identifying code by using cycles to identify the faulty processors in the hypercube. In this paper, we study the vertex identification problem on the twisted cube. We first propose an interesting construction scheme to build paths and cycles, and furthermore apply a minimum number of paths and cycles to identify the faulty processors of the twisted cube.

Keywords: Identify; Fault diagnosis; Gray code; Twisted cubes; Path; Cycle (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031500291X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:259:y:2015:i:c:p:620-627

DOI: 10.1016/j.amc.2015.02.090

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:259:y:2015:i:c:p:620-627