EconPapers    
Economics at your fingertips  
 

Numerical analysis of bump solutions for neural field equations with periodic microstructure

Elena Malyutina, Arcady Ponosov and John Wyller

Applied Mathematics and Computation, 2015, vol. 260, issue C, 370-384

Abstract: We study numerically single bump solutions of a homogenized Amari equation with periodic microvariation. Two attempts are made to detect single bumps that depend on the microvariable. The first attempt which is based on a pinning function technique is applicable in the Heaviside limit of the firing rate function. In the second attempt, we develop a numerical scheme which combines the two-scale convergence theory and an iteration procedure for the corresponding heterogeneous Amari equation. The numerical simulations in both attempts indicate the nonexistence of single bump solutions that depend on the microvariable. Motivated by this result, we finally develop a fixed point iteration scheme for the construction of single bump solutions that are independent of the microvariable when the firing rate function is given by a sigmoidal firing rate function.

Keywords: Rate equations in neuroscience; Periodic; Homogenization (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315003720
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:260:y:2015:i:c:p:370-384

DOI: 10.1016/j.amc.2015.03.058

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:260:y:2015:i:c:p:370-384