The rogue waves of the KP equation with self-consistent sources
Yi Zhang,
YanBo Sun and
Wen Xiang
Applied Mathematics and Computation, 2015, vol. 263, issue C, 204-213
Abstract:
General high-order rogue waves of the KP equation with self-consistent sources (KPESCSs) are derived via the Hirota bilinear method, which are given in terms of determinants whose matrix elements have plain algebraic expressions. By means of the regulation of free parameters, the presentation of fundamental rogue waves and the second-order rogue waves is demonstrated by the density and the three dimensional figures.
Keywords: Soliton; KP equation; Self-consistent sources; Hirota bilinear method; Rogue waves (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031500435X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:263:y:2015:i:c:p:204-213
DOI: 10.1016/j.amc.2015.03.116
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().