EconPapers    
Economics at your fingertips  
 

Traveling waves in a delayed SIR epidemic model with nonlinear incidence

Zhenguo Bai and Shi-Liang Wu

Applied Mathematics and Computation, 2015, vol. 263, issue C, 221-232

Abstract: We establish the existence and non-existence of traveling wave solutions for a diffusive SIR model with a general nonlinear incidence. The existence proof is shown by introducing an auxiliary system, applying Schauder’s fixed point theorem and then a limiting argument. The nonexistence proof is obtained by two-sided Laplace transform when the speed is less than the critical velocity. Numerical simulations support the theoretical results. We also point out the effects of the delay and the diffusion rate of the infective individuals on the spreading speed.

Keywords: Traveling wave solution; SIR model; Nonlinear incidence; Time delay (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315005068
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:263:y:2015:i:c:p:221-232

DOI: 10.1016/j.amc.2015.04.048

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:263:y:2015:i:c:p:221-232