EconPapers    
Economics at your fingertips  
 

Convergence and asymptotic stability of Galerkin methods for linear parabolic equations with delays

Hui Liang

Applied Mathematics and Computation, 2015, vol. 264, issue C, 160-178

Abstract: This paper is concerned with the convergence and asymptotic stability of semidiscrete and full discrete schemes for linear parabolic equations with delay. These full discrete numerical processes include forward Euler, backward Euler and Crank–Nicolson schemes. The optimal convergence orders are consistent with those of the original parabolic equation. It is proved that the semidiscrete scheme, backward Euler and Crank–Nicolson full discrete schemes can unconditionally preserve the delay-independent asymptotic stability, but some additional restrictions on time and spatial stepsizes of the forward Euler full discrete scheme is needed to preserve the delay-independent asymptotic stability. Numerical experiments illustrate the theoretical results.

Keywords: Linear parabolic equations; Delay; Convergence; Asymptotic stability; Galerkin methods (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315005664
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:264:y:2015:i:c:p:160-178

DOI: 10.1016/j.amc.2015.04.104

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:264:y:2015:i:c:p:160-178