EconPapers    
Economics at your fingertips  
 

Lattice Boltzmann simulation of the three-dimensional motions of particles with various density ratios in lid-driven cavity flow

Arman Safdari and Kyung Chun Kim

Applied Mathematics and Computation, 2015, vol. 265, issue C, 826-843

Abstract: An estimation of solid particle dynamics through a fluid has been studied. Although traditional computational fluids dynamics models can predict multiphase flow and the interactions between the fluid and solid particles, a high level of accuracy of an appropriate numerical model for this type of difficulty is still in demand. Some researchers examining this problem dedicated their research to the particle motions under the influence of gravity. Therefore, in this study a modern computational fluid dynamic model, the Lattice Boltzmann Method (LBM), was proposed to predict the three-dimensional cubic lid-driven cavity flow and combined with the Lagrangian approach on the prediction of solid particles in the range of different density ratios. To solve the term, flow fluid, the mesoscale numerical scheme of the Multi Relaxation Time (MRT) lattice Boltzmann method was used to simulate the objects at higher stability. In the present study, the different densities of the particles were considered and the effects of gravity were included in the calculation. The 4th Runge-Kutta method was functioned to determine the effect of an external force on a particle because this method is accurate enough compared to other known numerical schemes. The hard sphere model was used to model particle-particle and particle-wall collisions. The solid particle subtleties determined using a numerical fluid dynamic simulation of LBM showed good agreement with the reputable benchmark results by previous researchers. Furthermore, according to the results, the dependency of the particle trajectories on the magnitude of the density of the particles can be observed. The results revealed the significant effect of collision, drag force, gravity force, and vortex structure on a particle's trajectory. Consequently, the LBM model is suitable for this type of problem, and the proposed model is expected to have a wide range of applications.

Keywords: Lattice Boltzmann method; Lid-driven cavity flow; Particle motion; Collision; Multi relaxation time (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315007377
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:265:y:2015:i:c:p:826-843

DOI: 10.1016/j.amc.2015.05.106

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:826-843