EconPapers    
Economics at your fingertips  
 

Computing the strong Nash equilibrium for Markov chains games

Julio B. Clempner and Alexander S. Poznyak

Applied Mathematics and Computation, 2015, vol. 265, issue C, 911-927

Abstract: In this paper, we present a novel method for finding the strong Nash equilibrium. The approach consists on determining a scalar λ* and the corresponding strategies d*(λ*) fixing specific bounds (min and max) that belong to the Pareto front. Bounds correspond to restrictions imposed by the player over the Pareto front that establish a specific decision area where the strategies can be selected. We first exemplify the Pareto front of the game in terms of a nonlinear programming problem adding a set of linear constraints for the Markov chain game based on the c-variable method. For solving the strong Nash equilibrium problem we propose to employ the Euler method and a penalty function with regularization. The Tikhonov’s regularization method is used to guarantee the convergence to a single (strong) equilibrium point. Then, we established a nonlinear programming method to solve the successive single-objective constrained problems that arise from taking the regularized functional of the game. To achieve the goal, we implement the gradient method to solve the first-order optimality conditions. Starting from an utopia point (Pareto optimal point) given an initial λ of the individual objectives the method solves an optimization problem adding linear constraints required to find the optimal strong strategy d*(λ*). We show that in the regularized problem the functional of the game decrease and finally converges, proving the existence and uniqueness of strong Nash equilibrium (Pareto-optimal Nash equilibrium). In addition, we present the convergence conditions and compute the estimated rate of convergence of variables γ and δ corresponding to the step size parameter of the gradient method and the Tikhonov’s regularization respectively. Moreover, we provide all the details needed to implement the method in an efficient and numerically stable way. The usefulness of the method is successfully demonstrated by a numerical example.

Keywords: Strong Nash equilibrium; Pareto-optimal Nash equilibrium; Markov chains; Game theory (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031500781X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:265:y:2015:i:c:p:911-927

DOI: 10.1016/j.amc.2015.06.005

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-17
Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:911-927