EconPapers    
Economics at your fingertips  
 

A multiscale algorithm for radiative heat transfer equation with rapidly oscillating coefficients

Jizu Huang, Liqun Cao and Chao Yang

Applied Mathematics and Computation, 2015, vol. 266, issue C, 149-168

Abstract: This paper, as a continued work of Huang and Cao (2014), discusses the multiscale computation of the radiative heat transfer in composite materials or porous media. A novel multiscale asymptotic expansion is presented, and an explicit rate of convergence is derived. We develop a multiscale algorithm for solving this kind of problem. A fully implicit scheme is carefully studied and an iterative algorithm is given. The convergence of the iterative algorithm is proved by the fixed point method. Numerical results confirm the efficiency and accuracy of this approach and show that the novel multiscale asymptotic expansion is essential for the radiative-dominated cases.

Keywords: Radiation heat transfer equation; Homogenization; Multiscale asymptotic expansion; Composite materials; Porous media (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315006657
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:266:y:2015:i:c:p:149-168

DOI: 10.1016/j.amc.2015.05.048

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:149-168