EconPapers    
Economics at your fingertips  
 

Monotonicity of zeros for a class of polynomials including hypergeometric polynomials

Kenier Castillo

Applied Mathematics and Computation, 2015, vol. 266, issue C, 183-193

Abstract: We study the monotonicity of zeros in connection with perturbed recurrence coefficients of polynomials satisfying certain three-term recurrence relations of Frobenius-type. These recurrence relations are the key ingredient for the tridiagonal approach developed by Delsarte and Genin to solve the standard linear prediction problem. As a particular case, we consider the Askey para-orthogonal polynomials on the unit circle, 2F1(−n,a+bi;2a;1−z),a,b∈R, extending a recent result about the monotonicity of their zeros with respect to the parameter b. Finally, the consequences of our results in the theory of orthogonal polynomials on the real line are discussed.

Keywords: Three-term recurrence relation; Hypergeometric polynomials; Zeros; Monotonicity (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315006827
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:266:y:2015:i:c:p:183-193

DOI: 10.1016/j.amc.2015.05.058

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:183-193