EconPapers    
Economics at your fingertips  
 

Numerical simulation of circumferentially averaged flow in a turbine

Jiří Fürst, Jaroslav Fořt, Jan Halama, Jiří Holman, Jan Karel, Vladimír Prokop and David Trdlička

Applied Mathematics and Computation, 2015, vol. 267, issue C, 498-505

Abstract: The paper refers about the development of a fast computational code, which should be able to provide an approximate information about the three-dimensional flow field in a multistage turbine. The code is based upon the solution of circumferentially averaged Euler equations coupled with the thermodynamic, geometry and loss prediction models. The computational domain is the meridional cut of a turbine. The Euler equations are solved by a finite volume solver with the AUSM type flux. Initial tests showed, that developed solver is able to predict well radial distributions of flow parameters upstream and downstream considered blade cascades at a fraction of CPU time compared to fully three-dimensional simulations.

Keywords: Turbine; Finite volume method; Loss model (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315001186
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:267:y:2015:i:c:p:498-505

DOI: 10.1016/j.amc.2015.01.086

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:267:y:2015:i:c:p:498-505