Harmonic mappings related to the m-fold starlike functions
Melike Aydoğan,
Yaşar Polatoğlu and
Yasemin Kahramaner
Applied Mathematics and Computation, 2015, vol. 267, issue C, 805-809
Abstract:
In the present paper we will give some properties of the subclass of harmonic mappings which is related to m-fold starlike functions in the open unit disc D={z||z|<1}. Throughout this paper we restrict ourselves to the study of sense-preserving harmonic mappings. We also note that an elegant and complete treatment theory of the harmonic mapping is given in Durens monograph (Duren, 1983). The main aim of us to investigate some properties of the new class of us which represented as in the following form,S∗H(m)=f=h(z)+g(z)‾|f∈SH(m),g′(z)h′(z)≺b1p(z),h(z)∈S∗(m),p(z)∈P(m),where h(z)=z+∑n=1∞amn+1zmn+1, g(z)=∑n=0∞bmn+1zmn+1,|b1|<1.
Keywords: m-fold starlike functions; Distortion theorem; Growth theorem (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314013824
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:267:y:2015:i:c:p:805-809
DOI: 10.1016/j.amc.2014.10.016
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().