EconPapers    
Economics at your fingertips  
 

Mould-taper asymptotics and air gap formation in continuous casting

B.J. Florio, M. Vynnycky, S.L. Mitchell and O’Brien, S.B.G.

Applied Mathematics and Computation, 2015, vol. 268, issue C, 1122-1139

Abstract: We develop a coupled thermomechanical model, that includes mould taper, for the formation of air gaps in the vertical continuous casting of round billets. The system is very sensitive to the small width of the air gap. Mould tapers are used to mitigate the contraction of the solidified shell during cooling. We apply numerical and perturbation methods to show that a small mould taper significantly reduces the insulating effect of the air gap. The analysis is presented in a more transparent and less computationally expensive way than earlier, fully numerical models. We also consider a theoretical ideal taper, which eliminates the air gap altogether. The air gap is found to be quite robust; increasing the size of the taper does not constitute an equal reduction in the air gap size. Sample computations are carried out using parameters for the continuous casting of a pure metal (copper), although the framework can easily be extended to the continuous casting of alloys.

Keywords: Continuous casting; Air gap formation; Asymptotics; Taper (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315009236
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:268:y:2015:i:c:p:1122-1139

DOI: 10.1016/j.amc.2015.07.011

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:1122-1139