Automatic implementation of the numerical Taylor series method: A Mathematica and Sage approach
A. Abad,
R. Barrio,
M. Marco-Buzunariz and
M. Rodríguez
Applied Mathematics and Computation, 2015, vol. 268, issue C, 227-245
Abstract:
In the last few years, the requirements in the numerical solution of ordinary differential equations in physics and in dynamical systems have pointed to new kind of methods capable to maintain geometric properties of the equations, or looking for high-precision, or solving variational equations. One method that can solve most of these problems is the Taylor series method. TIDES is a free software based on the Taylor series method that uses an optimized variable-stepsize variable-order formulation. The kernel of this software consists of a C library that permits to compute up to any precision level (by using multiple precision libraries for high precision when needed) the solution of an ordinary differential system from a C driver program containing the equations of the ODE. In this paper we present the symbolic methods, implemented in a computer algebra system (CAS), used to write, automatically, the code based on the automatic differentiation processes that integrates a particular differential system by means of the Taylor method. The precompiler has been written in Mathematica and Sage (which includes it by default since version 6.4). The software has been done to be extremely easy to use. The Mathematica version also permits to compute in a direct way not only the solution of the differential system, but also the partial derivatives, up to any order, of the solution with respect to the initial conditions or any parameter of the system.
Keywords: Taylor series method; TIDES; ODEs; Automatic differentiation; Sage; Mathematica (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315008231
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:268:y:2015:i:c:p:227-245
DOI: 10.1016/j.amc.2015.06.042
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().