EconPapers    
Economics at your fingertips  
 

Stability and Hopf bifurcation analysis of a ratio-dependent predator–prey model with two time delays and Holling type III functional response

Xuedi Wang, Miao Peng and Xiuyu Liu

Applied Mathematics and Computation, 2015, vol. 268, issue C, 496-508

Abstract: In this paper, a delayed ratio-dependent predator–prey model with Holling type III functional response and stage structure for the predator is considered. By analyzing the corresponding characteristic equations, the local stability of each of the feasible equilibria of the system is addressed and the existence of Hopf bifurcations at the coexistence equilibrium is established. By utilizing normal form method and center manifold theorem, the explicit formulas which determine the direction of Hopf bifurcation and the stability of bifurcating period solutions are derived. Finally, numerical simulations supporting the theoretical analysis are given.

Keywords: Predator–prey system; Ratio-dependent; Local stability; Hopf bifurcation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315008899
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:268:y:2015:i:c:p:496-508

DOI: 10.1016/j.amc.2015.06.108

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:496-508