EconPapers    
Economics at your fingertips  
 

The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation

Cui-cui Ji and Zhi-zhong Sun

Applied Mathematics and Computation, 2015, vol. 269, issue C, 775-791

Abstract: In this paper, performing the average operators on the space variables, a numerical scheme with third-order temporal convergence for the two-dimensional fractional sub-diffusion equation is considered, for which the unconditional stability and convergence in L1(L∞)-norm are strictly analyzed for α ∈ (0, 0.9569347] by using the discrete energy method. Therewith, adding small perturbation terms, we construct a compact alternating direction implicit difference scheme for the two-dimensional case. Finally, some numerical results have been given to show the computational efficiency and numerical accuracy of both schemes for all α ∈ (0, 1).

Keywords: Two-dimensional fractional sub-diffusion equation; Numerical schemes; High-order; Discrete energy method; Stability; Convergence (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315010103
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:269:y:2015:i:c:p:775-791

DOI: 10.1016/j.amc.2015.07.088

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:775-791