The peloton superorganism and protocooperative behavior
Hugh Trenchard
Applied Mathematics and Computation, 2015, vol. 270, issue C, 179-192
Abstract:
A theoretical framework for protocooperative behavior in pelotons (groups of cyclists) is proposed. A threshold between cooperative and free-riding behaviors in pelotons is modeled, together comprising protocooperative behavior (different from protocooperation), hypothesized to emerge in biological systems involving energy savings mechanisms. Further, the tension between intra-group cooperation and inter-group competition is consistent with superorganism properties. Protocooperative behavior parameters: 1. two or more cyclists coupled by drafting benefit; 2. current power output or speed; and 3. maximal sustainable outputs (MSO). Main characteristics: 1. relatively low speed phase in which cyclists naturally pass each other and share highest-cost front position; and 2. free-riding phase in which cyclists maintain speeds of those ahead, but cannot pass. Threshold for protocooperative behavior is equivalent to coefficient of drafting (d), below which cooperative behavior occurs; above which free-riding occurs up to a second threshold when coupled cyclists diverge. Range of cyclists’ MSOs in free-riding phase is equivalent to the energy savings benefit of drafting (1-d). When driven to maximal speeds, groups tend to sort such that their MSO ranges equal the free-riding range (1-d).
Keywords: Peloton; Cooperation; Protocooperative behavior; Maximal sustainable outputs; Superorganism (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315010619
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:270:y:2015:i:c:p:179-192
DOI: 10.1016/j.amc.2015.08.006
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().