EconPapers    
Economics at your fingertips  
 

A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics

Young Hee Geum, Young Ik Kim and Beny Neta

Applied Mathematics and Computation, 2015, vol. 270, issue C, 387-400

Abstract: Under the assumption of the known multiplicity of zeros of nonlinear equations, a class of two-point sextic-order multiple-zero finders and their dynamics are investigated in this paper by means of extensive analysis of modified double-Newton type of methods. With the introduction of a bivariate weight function dependent on function-to-function and derivative-to-derivative ratios, higher-order convergence is obtained. Additional investigation is carried out for extraneous fixed points of the iterative maps associated with the proposed methods along with a comparison with typically selected cases. Through a variety of test equations, numerical experiments strongly support the theory developed in this paper. In addition, relevant dynamics of the proposed methods is successfully explored for various polynomials with a number of illustrative basins of attraction.

Keywords: Multiple-zero finder; Extraneous fixed point; Double-Newton; Basins of attraction (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315010942
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:270:y:2015:i:c:p:387-400

DOI: 10.1016/j.amc.2015.08.039

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:387-400