Statistical convergence behavior of affine projection algorithms
Yongfeng Zhi,
Jieliang Li,
Jun Zhang and
Zhen Wang
Applied Mathematics and Computation, 2015, vol. 270, issue C, 511-526
Abstract:
Class of algorithms referring to the affine projection algorithms (APA) applies updates to the weights in a direction that is orthogonal to the most recent input vectors. This speeds up the convergence of the algorithm over that of the normalized least mean square (NLMS) algorithm, especially for highly colored input processes. In this paper a new statistical analysis model is used to analyze the APA class of algorithms with unity step size. Four assumptions are made, which are based on the direction vector for the APA class. Under these assumptions, deterministic recursive equations for the weight error and for the mean-square error are derived. We also analyze the steady-state behavior of the APA class. The new model is applicable to input processes that are autoregressive as well as autoregressive-moving average, and therefore is useful under more general conditions than previous models for prediction of the mean square error of the APA class. Simulation results are provided to corroborate the analytical results.
Keywords: Adaptive filter; Affine projection algorithm; Statistical analysis; System identification (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315011091
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:270:y:2015:i:c:p:511-526
DOI: 10.1016/j.amc.2015.08.054
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().