EconPapers    
Economics at your fingertips  
 

Connecting spatial and frequency domains for the quaternion Fourier transform

H. De Bie, N. De Schepper, T.A. Ell, K. Rubrecht and S.J. Sangwine

Applied Mathematics and Computation, 2015, vol. 271, issue C, 581-593

Abstract: The quaternion Fourier transform (qFT) is an important tool in multi-dimensional data analysis, in particular for the study of color images. An important problem when applying the qFT is the mismatch between the spatial and frequency domains: the convolution of two quaternion signals does not map to the pointwise product of their qFT images. The recently defined ‘Mustard’ convolution behaves nicely in the frequency domain, but complicates the corresponding spatial domain analysis.

Keywords: Quaternion Fourier transform; Convolution products; Frequency domain; Spatial domain (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315012813
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:271:y:2015:i:c:p:581-593

DOI: 10.1016/j.amc.2015.09.045

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:581-593