EconPapers    
Economics at your fingertips  
 

Isogeometric shell analysis with NURBS compatible subdivision surfaces

A. Riffnaller-Schiefer, U.H. Augsdörfer and D.W. Fellner

Applied Mathematics and Computation, 2016, vol. 272, issue P1, 139-147

Abstract: We present a discretisation of Kirchhoff–Love thin shells based on a subdivision algorithm that generalises NURBS to arbitrary topology. The isogeometric framework combines the advantages of both subdivision and NURBS, enabling higher degree analysis on watertight meshes of arbitrary geometry, including conic sections. Because multiple knots are supported, it is possible to benefit from symmetries in the geometry for a more efficient subdivision based analysis. The use of the new subdivision algorithm is an improvement to the flexibility of current isogeometric analysis approaches and allows new use cases.

Keywords: Isogeometry; Subdivision; Thin shell (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315008942
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:272:y:2016:i:p1:p:139-147

DOI: 10.1016/j.amc.2015.06.113

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:272:y:2016:i:p1:p:139-147